Minimizing Uncertainty in Semantic Identification When Computing Resources Are Limited
نویسندگان
چکیده
In this paper we examine the problem of automatic semantic identification of entities in multimedia documents from a computing point of view. Specifically, we identify as main points to consider the storage of the required knowledge and the computational complexity of the handling of the knowledge as well as of the actual identification process. In order to tackle the above we utilize (i) a sparse representation model for storage, (ii) a novel transitive closure algorithm for handling and (iii) a novel approach to identification that allows for the specification of computational boundaries.
منابع مشابه
A semantic-aware role-based access control model for pervasive computing environments
Access control in open and dynamic Pervasive Computing Environments (PCEs) is a very complex mechanism and encompasses various new requirements. In fact, in such environments, context information should be used in access control decision process; however, it is not applicable to gather all context information completely and accurately all the time. Thus, a suitable access control model for PCEs...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملCycle Time Reduction and Runtime Rebalancing by Reallocating Dependent Tasks
Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these...
متن کاملModeling and solving multi-skilled resource-constrained project scheduling problem with calendars in fuzzy condition
In this study, we aim to present a new model for the resource-constrained project scheduling problem (RCPSP) considering a working calendar for project members and determined the skill factor of any member using the efficiency concept. For this purpose, the recyclable resources are staff resources where any person with multiple skills can meet the required skills of activities in a given time. ...
متن کاملMultirobot Symbolic Planning under Temporal Uncertainty
Multirobot symbolic planning (MSP) aims at computing plans, each in the form of a sequence of actions, for a team of robots to achieve their individual goals while minimizing overall cost. Solving MSP problems requires modeling limited domain resources (e.g., corridors that allow at most one robot at a time) and the possibility of action synergy (e.g., multiple robots going through a door after...
متن کامل